
Unreliable research

Trouble at the lab

Scientists like to think of science as self-correcting. To an alarming degree, it is
not
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“I SEE a train wreck looming,” warned Daniel

Kahneman, an eminent psychologist, in an

open letter last year. The premonition

concerned research on a phenomenon known

as “priming”. Priming studies suggest that

decisions can be influenced by apparently

irrelevant actions or events that took place just

before the cusp of choice. They have been a

boom area in psychology over the past decade, and some of their insights have already made

it out of the lab and into the toolkits of policy wonks keen on “nudging” the populace.

Dr Kahneman and a growing number of his colleagues fear that a lot of this priming

research is poorly founded. Over the past few years various researchers have made

systematic attempts to replicate some of the more widely cited priming experiments. Many of

these replications have failed. In April, for instance, a paper in PLoS ONE, a journal, reported

that nine separate experiments had not managed to reproduce the results of a famous study

from 1998 purporting to show that thinking about a professor before taking an intelligence

test leads to a higher score than imagining a football hooligan.

The idea that the same experiments always get the same results, no matter who performs

them, is one of the cornerstones of science’s claim to objective truth. If a systematic

campaign of replication does not lead to the same results, then either the original research is

flawed (as the replicators claim) or the replications are (as many of the original researchers

on priming contend). Either way, something is awry.

To err is all too common

It is tempting to see the priming fracas as an isolated case in an area of science—psychology

—easily marginalised as soft and wayward. But irreproducibility is much more widespread. A

few years ago scientists at Amgen, an American drug company, tried to replicate 53 studies
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that they considered landmarks in the basic science of cancer, often co-operating closely with

the original researchers to ensure that their experimental technique matched the one used

first time round. According to a piece they wrote last year in Nature, a leading scientific

journal, they were able to reproduce the original results in just six. Months earlier Florian

Prinz and his colleagues at Bayer HealthCare, a German pharmaceutical giant, reported in

Nature Reviews Drug Discovery, a sister journal, that they had successfully reproduced the

published results in just a quarter of 67 seminal studies.

The governments of the OECD, a club of mostly rich countries, spent $59 billion on

biomedical research in 2012, nearly double the figure in 2000. One of the justifications for

this is that basic-science results provided by governments form the basis for private drug-

development work. If companies cannot rely on academic research, that reasoning breaks

down. When an official at America’s National Institutes of Health (NIH) reckons,

despairingly, that researchers would find it hard to reproduce at least three-quarters of all

published biomedical findings, the public part of the process seems to have failed.

Academic scientists readily acknowledge that they often get things wrong. But they also hold

fast to the idea that these errors get corrected over time as other scientists try to take the

work further. Evidence that many more dodgy results are published than are subsequently

corrected or withdrawn calls that much-vaunted capacity for self-correction into question.

There are errors in a lot more of the scientific papers being published, written about and

acted on than anyone would normally suppose, or like to think.

Various factors contribute to the problem. Statistical mistakes are widespread. The peer

reviewers who evaluate papers before journals commit to publishing them are much worse

at spotting mistakes than they or others appreciate. Professional pressure, competition and

ambition push scientists to publish more quickly than would be wise. A career structure

which lays great stress on publishing copious papers exacerbates all these problems. “There is

no cost to getting things wrong,” says Brian Nosek, a psychologist at the University of

Virginia who has taken an interest in his discipline’s persistent errors. “The cost is not getting

them published.”

First, the statistics, which if perhaps off-putting are quite crucial. Scientists divide errors into

two classes. A type I error is the mistake of thinking something is true when it is not (also

known as a “false positive”). A type II error is thinking something is not true when in fact it

is (a “false negative”). When testing a specific hypothesis, scientists run statistical checks to

work out how likely it would be for data which seem to support the idea to have come about

simply by chance. If the likelihood of such a false-positive conclusion is less than 5%, they

deem the evidence that the hypothesis is true “statistically significant”. They are thus

accepting that one result in 20 will be falsely positive—but one in 20 seems a satisfactorily

low rate.



Understanding insignificance

In 2005 John Ioannidis, an epidemiologist from Stanford University, caused a stir with a

paper showing why, as a matter of statistical logic, the idea that only one such paper in 20

gives a false-positive result was hugely optimistic. Instead, he argued, “most published

research findings are probably false.” As he told the quadrennial International Congress on

Peer Review and Biomedical Publication, held this September in Chicago, the problem has

not gone away.

Dr Ioannidis draws his stark conclusion on the basis that the customary approach to

statistical significance ignores three things: the “statistical power” of the study (a measure of

its ability to avoid type II errors, false negatives in which a real signal is missed in the noise);

the unlikeliness of the hypothesis being tested; and the pervasive bias favouring the

publication of claims to have found something new.

A statistically powerful study is one able to pick things up even when their effects on the data

are small. In general bigger studies—those which run the experiment more times, recruit

more patients for the trial, or whatever—are more powerful. A power of 0.8 means that of

ten true hypotheses tested, only two will be ruled out because their effects are not picked up

in the data; this is widely accepted as powerful enough for most purposes. But this

benchmark is not always met, not least because big studies are more expensive. A study in

April by Dr Ioannidis and colleagues found that in neuroscience the typical statistical power

is a dismal 0.21; writing in Perspectives on Psychological Science, Marjan Bakker of the

University of Amsterdam and colleagues reckon that in that field the average power is 0.35.

Unlikeliness is a measure of how surprising the result might be. By and large, scientists want

surprising results, and so they test hypotheses that are normally pretty unlikely and often

very unlikely. Dr Ioannidis argues that in his field, epidemiology, you might expect one in

ten hypotheses to be true. In exploratory disciplines like genomics, which rely on combing

through vast troves of data about genes and proteins for interesting relationships, you might

expect just one in a thousand to prove correct.

With this in mind, consider 1,000 hypotheses being tested of which just 100 are true (see

chart). Studies with a power of 0.8 will find 80 of them, missing 20 because of false

negatives. Of the 900 hypotheses that are wrong, 5%—that is, 45 of them—will look right

because of type I errors. Add the false positives to the 80 true positives and you have 125

positive results, fully a third of which are specious. If you dropped the statistical power from

0.8 to 0.4, which would seem realistic for many fields, you would still have 45 false positives

but only 40 true positives. More than half your positive results would be wrong.

The negative results are much more trustworthy; for the case where the power is 0.8 there

are 875 negative results of which only 20 are false, giving an accuracy of over 97%. But

researchers and the journals in which they publish are not very interested in negative results.
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They prefer to accentuate the positive, and thus the error-prone. Negative results account for

just 10-30% of published scientific literature, depending on the discipline. This bias may be

growing. A study of 4,600 papers from across the sciences conducted by Daniele Fanelli of

the University of Edinburgh found that the proportion of negative results dropped from 30%

to 14% between 1990 and 2007. Lesley Yellowlees, president of Britain’s Royal Society of

Chemistry, has published more than 100 papers. She remembers only one that reported a

negative result.

Statisticians have ways to deal with such problems. But most scientists are not statisticians.

Victoria Stodden, a statistician at Columbia, speaks for many in her trade when she says that

scientists’ grasp of statistics has not kept pace with the development of complex

mathematical techniques for crunching data. Some scientists use inappropriate techniques

because those are the ones they feel comfortable with; others latch on to new ones without

understanding their subtleties. Some just rely on the methods built into their software, even if

they don’t understand them.

Not even wrong

This fits with another line of evidence suggesting that a lot of scientific research is poorly

thought through, or executed, or both. The peer-reviewers at a journal like Nature provide

editors with opinions on a paper’s novelty and significance as well as its shortcomings. But

some new journals—PLoS One, published by the not-for-profit Public Library of Science, was

the pioneer—make a point of being less picky. These “minimal-threshold” journals, which are

online-only, seek to publish as much science as possible, rather than to pick out the best.

They thus ask their peer reviewers only if a paper is methodologically sound. Remarkably,

almost half the submissions to PLoS One are rejected for failing to clear that seemingly low

bar.

The pitfalls Dr Stodden points to get deeper as research increasingly involves sifting through

untold quantities of data. Take subatomic physics, where data are churned out by the

petabyte. It uses notoriously exacting methodological standards, setting an acceptable false-

positive rate of one in 3.5m (known as the five-sigma standard). But maximising a single

figure of merit, such as statistical significance, is never enough: witness the “pentaquark”
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saga. Quarks are normally seen only two or

three at a time, but in the mid-2000s various

labs found evidence of bizarre five-quark

composites. The analyses met the five-sigma

test. But the data were not “blinded” properly;

the analysts knew a lot about where the

numbers were coming from. When an

experiment is not blinded, the chances that the

experimenters will see what they “should” see

rise. This is why people analysing clinical-trials

data should be blinded to whether data come

from the “study group” or the control group.

When looked for with proper blinding, the

previously ubiquitous pentaquarks

disappeared.

Other data-heavy disciplines face similar

challenges. Models which can be “tuned” in

many different ways give researchers more

scope to perceive a pattern where none exists.

According to some estimates, three-quarters of published scientific papers in the field of

machine learning are bunk because of this “overfitting”, says Sandy Pentland, a computer

scientist at the Massachusetts Institute of Technology.

Similar problems undid a 2010 study published in Science, a prestigious American journal

(and reported in this newspaper). The paper seemed to uncover genetic variants strongly

associated with longevity. Other geneticists immediately noticed that the samples taken from

centenarians on which the results rested had been treated in different ways from those from

a younger control group. The paper was retracted a year later, after its authors admitted to

“technical errors” and “an inadequate quality-control protocol”.

The number of retractions has grown tenfold over the past decade. But they still make up no

more than 0.2% of the 1.4m papers published annually in scholarly journals. Papers with

fundamental flaws often live on. Some may develop a bad reputation among those in the

know, who will warn colleagues. But to outsiders they will appear part of the scientific

canon.

Blame the ref

The idea that there are a lot of uncorrected flaws in published studies may seem hard to

square with the fact that almost all of them will have been through peer-review. This sort of

scrutiny by disinterested experts—acting out of a sense of professional obligation, rather than



for pay—is often said to make the scientific literature particularly reliable. In practice it is

poor at detecting many types of error.

John Bohannon, a biologist at Harvard, recently submitted a pseudonymous paper on the

effects of a chemical derived from lichen on cancer cells to 304 journals describing

themselves as using peer review. An unusual move; but it was an unusual paper, concocted

wholesale and stuffed with clangers in study design, analysis and interpretation of results.

Receiving this dog’s dinner from a fictitious researcher at a made up university, 157 of the

journals accepted it for publication.

Dr Bohannon’s sting was directed at the lower tier of academic journals. But in a classic 1998

study Fiona Godlee, editor of the prestigious British Medical Journal, sent an article

containing eight deliberate mistakes in study design, analysis and interpretation to more than

200 of the BMJ’s regular reviewers. Not one picked out all the mistakes. On average, they

reported fewer than two; some did not spot any.

Another experiment at the BMJ showed that reviewers did no better when more clearly

instructed on the problems they might encounter. They also seem to get worse with

experience. Charles McCulloch and Michael Callaham, of the University of California, San

Francisco, looked at how 1,500 referees were rated by editors at leading journals over a 14-

year period and found that 92% showed a slow but steady drop in their scores.

As well as not spotting things they ought to spot, there is a lot that peer reviewers do not even

try to check. They do not typically re-analyse the data presented from scratch, contenting

themselves with a sense that the authors’ analysis is properly conceived. And they cannot be

expected to spot deliberate falsifications if they are carried out with a modicum of subtlety.

Fraud is very likely second to incompetence in generating erroneous results, though it is hard

to tell for certain. Dr Fanelli has looked at 21 different surveys of academics (mostly in the

biomedical sciences but also in civil engineering, chemistry and economics) carried out

between 1987 and 2008. Only 2% of respondents admitted falsifying or fabricating data, but

28% of respondents claimed to know of colleagues who engaged in questionable research

practices.

Peer review’s multiple failings would matter less if science’s self-correction mechanism—

replication—was in working order. Sometimes replications make a difference and even hit

the headlines—as in the case of Thomas Herndon, a graduate student at the University of

Massachusetts. He tried to replicate results on growth and austerity by two economists,

Carmen Reinhart and Kenneth Rogoff, and found that their paper contained various errors,

including one in the use of a spreadsheet.

Harder to clone than you would wish



Such headlines are rare, though, because replication is hard and thankless. Journals, thirsty

for novelty, show little interest in it; though minimum-threshold journals could change this,

they have yet to do so in a big way. Most academic researchers would rather spend time on

work that is more likely to enhance their careers. This is especially true of junior researchers,

who are aware that overzealous replication can be seen as an implicit challenge to authority.

Often, only people with an axe to grind pursue replications with vigour—a state of affairs

which makes people wary of having their work replicated.

There are ways, too, to make replication difficult. Reproducing research done by others often

requires access to their original methods and data. A study published last month in PeerJ by

Melissa Haendel, of the Oregon Health and Science University, and colleagues found that

more than half of 238 biomedical papers published in 84 journals failed to identify all the

resources (such as chemical reagents) necessary to reproduce the results. On data, Christine

Laine, the editor of the Annals of Internal Medicine, told the peer-review congress in Chicago

that five years ago about 60% of researchers said they would share their raw data if asked;

now just 45% do. Journals’ growing insistence that at least some raw data be made available

seems to count for little: a recent review by Dr Ioannidis which showed that only 143 of 351

randomly selected papers published in the world’s 50 leading journals and covered by some

data-sharing policy actually complied.

And then there are the data behind

unpublished research. A study in the BMJ last

year found that fewer than half the clinical

trials financed by the NIH resulted in

publication in a scholarly journal within 30

months of completion; a third remained

unpublished after 51 months. Only 22% of

trials released their summary results within

one year of completion, even though the NIH requires that they should.

Clinical trials are very costly to rerun. Other people looking at the same problems thus need

to be able to access their data. And that means all the data. Focusing on a subset of the data

can, wittingly or unwittingly, provide researchers with the answer they want. Ben Goldacre,

a British doctor and writer, has been leading a campaign to bring pharmaceutical firms to

book for failing to make available all the data from their trials. It may be working. In

February GlaxoSmithKline, a British drugmaker, became the first big pharma company to

promise to publish all its trial data.

Software can also be a problem for would-be replicators. Some code used to analyse data or

run models may be the result of years of work and thus precious intellectual property that

gives its possessors an edge in future research. Although most scientists agree in principle

that data should be openly available, there is genuine disagreement on software. Journals



which insist on data-sharing tend not to do the same for programs.

Harry Collins, a sociologist of science at Cardiff University, makes a more subtle point that

cuts to the heart of what a replication can be. Even when the part of the paper devoted to

describing the methods used is up to snuff (and often it is not), performing an experiment

always entails what sociologists call “tacit knowledge”—craft skills and extemporisations that

their possessors take for granted but can pass on only through example. Thus if a replication

fails, it could be because the repeaters didn’t quite get these je-ne-sais-quoi bits of the protocol

right.

Taken to extremes, this leads to what Dr Collins calls “the experimenter’s regress”—you can

say an experiment has truly been replicated only if the replication gets the same result as the

original, a conclusion which makes replication pointless. Avoiding this, and agreeing that a

replication counts as “the same procedure” even when it gets a different result, requires

recognising the role of tacit knowledge and judgment in experiments. Scientists are not

comfortable discussing such things at the best of times; in adversarial contexts it gets yet

more vexed.

Some organisations are trying to encourage more replication. PLoS ONE and Science

Exchange, a matchmaking service for researchers and labs, have launched a programme

called the Reproducibility Initiative through which life scientists can pay to have their work

validated by an independent lab. On October 16th the initiative announced it had been given

$1.3m by the Laura and John Arnold Foundation, a charity, to look at 50 of the highest-

impact cancer findings published between 2010 and 2012. Blog Syn, a website run by

graduate students, is dedicated to reproducing chemical reactions reported in papers. The first

reaction they tried to repeat worked—but only at a much lower yield than was suggested in

the original research.

Making the paymasters care

Conscious that it and other journals “fail to exert sufficient scrutiny over the results that they

publish” in the life sciences, Nature and its sister publications introduced an 18-point

checklist for authors this May. The aim is to ensure that all technical and statistical

information that is crucial to an experiment’s reproducibility or that might introduce bias is

published. The methods sections of papers are being expanded online to cope with the extra

detail; and whereas previously only some classes of data had to be deposited online, now all

must be.

Things appear to be moving fastest in psychology. In March Dr Nosek unveiled the Centre

for Open Science, a new independent laboratory, endowed with $5.3m from the Arnold

Foundation, which aims to make replication respectable. Thanks to Alan Kraut, the director

of the Association for Psychological Science, Perspectives on Psychological Science, one of

the association’s flagship publications, will soon have a section devoted to replications. It



might be a venue for papers from a project, spearheaded by Dr Nosek, to replicate 100

studies across the whole of psychology that were published in the first three months of 2008

in three leading psychology journals.

People who pay for science, though, do not seem seized by a desire for improvement in this

area. Helga Nowotny, president of the European Research Council, says proposals for

replication studies “in all likelihood would be turned down” because of the agency’s focus on

pioneering work. James Ulvestad, who heads the division of astronomical sciences at

America’s National Science Foundation, says the independent “merit panels” that make grant

decisions “tend not to put research that seeks to reproduce previous results at or near the top

of their priority lists”. Douglas Kell of Research Councils UK, which oversees Britain’s

publicly funded research argues that current procedures do at least tackle the problem of bias

towards positive results: “If you do the experiment and find nothing, the grant will

nonetheless be judged more highly if you publish.”

In testimony before Congress on March 5th Bruce Alberts, then the editor of Science,

outlined what needs to be done to bolster the credibility of the scientific enterprise. Journals

must do more to enforce standards. Checklists such as the one introduced by Nature should

be adopted widely, to help guard against the most common research errors. Budding

scientists must be taught technical skills, including statistics, and must be imbued with

scepticism towards their own results and those of others. Researchers ought to be judged on

the basis of the quality, not the quantity, of their work. Funding agencies should encourage

replications and lower the barriers to reporting serious efforts which failed to reproduce a

published result. Information about such failures ought to be attached to the original

publications.

And scientists themselves, Dr Alberts insisted, “need to develop a value system where simply

moving on from one’s mistakes without publicly acknowledging them severely damages,

rather than protects, a scientific reputation.” This will not be easy. But if science is to stay on

its tracks, and be worthy of the trust so widely invested in it, it may be necessary.
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